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We investigate the time evolution of an aggregate system undergoing orthokinetic acoustic agglomeration.
The kernel function characterizing the dynamics of the process includes the fractal structure of the aggregates.
We demonstrate that to leading order in average aggregate multiplicity^k&, which is essentially the aggregate
mass, the dynamic equation exhibits scaling properties with the scale function being proportional to^k&.
Numerical simulation carried out for fractal dimensionD.2 confirms the approach of the asymptotic scaling
solution. We demonstrate that starting from two very different initial distributions is the same final scaling
distribution. This is in spite of the fact that the rates of their approach are sensitive to the initial distributions.
@S1063-651X~96!03609-4#

PACS number~s!: 82.70.2y, 43.90.1v

I. INTRODUCTION

Aerosols generated from combustion of fossil fuels and
from processes used to produce industrial chemicals are typi-
cally in the submicrometer and micrometer size range. They
are harmful to the human respiratory system and are signifi-
cant contributors to air pollution@1#. The application of in-
tense sonic fields to aerosol suspensions promotes agglom-
eration that systematically shifts the aerosols to larger sizes.
The larger sized aggregates are less harmful and easier to
remove. Reference@2# gives several references which will
help the reader to trace the past important experimental and
theoretical effort in acoustic agglomeration.

Acoustic agglomeration dynamics are based on the same
theoretical framework used for more familiar coagulation
processes. Consider the time evolution of an aggregate sys-
tem and denote the number density of aggregates of multi-
plicity k ~meaning there arek primary aggregate per aggre-
gate with k51,2,...! by ck . The Smoluchowski equation,
given by
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governs the acoustic agglomeration process. HereK is the
kernel function that characterizes the dynamics of the pro-
cess. In Ref.@2#, Mednikov reviewed a range of possible
mechanisms occurring in acoustic-aerosol interactions. He
proposed that the orthokinetic interactions, caused by colli-
sions due to acoustic-induced relative motions among aggre-
gates of different sizes, are the dominant mechanism. Tiwary
and Reethof showed that this mechanism is in qualitative
agreement with the data@3#. A work by Song, Koopmann,
and Hoffmann@4# discussed further refinements in the treat-
ment of orthokinetic interactions, as well as the addition of
the hydrodynamic interactions. Apparently the inclusion of
both mechanisms gives better agreement with the data.

There are a number of theoretical works found in the lit-
erature that use various simple kernel functions to deduce
ramifications in coagulation processes~see, for example,
Ref. @5# and references cited therein!. There are also works in
the literature that concern the fractal structure of aggregates

in the context of Brownian coagulation~see, for examples,
@6–8# and references cited therein!. Due to the relative com-
plexity of the dynamics, research in the field of acoustic
agglomeration remained restricted to numerical simulations.
In this paper a partial analytic solution to the Smoluchowski
equation for acoustic agglomeration is developed and then
verified by numerical simulation.

II. ORTHOKINETIC KERNEL WITH FRACTAL
STRUCTURE

This derivation neglects all interactions between aggre-
gates besides collisions and concentrates on the motion of
the aggregates induced by its relative velocity with the sur-
rounding media. If the incident sound wave has a wavelength
much greater than the aggregate fractal radiusr D and its
angular frequencyv satisfies the conditionr D

2v!m, the hy-
drodynamic equations characterizing the interaction of the
aggregate with the media reduce to the form of the equations
in Ref. @6#. Herem is the coefficient of viscosity of the me-
dia.

The analysis in Ref.@6# determines that the main force on
the aggregate is the Stokes drag force with the normal radius
of a solid sphere replaced by the fractal radius of the aggre-
gate. We treat the agglomerate as spherically symmetric,
which corresponds to an averaging over all possible aggre-
gate orientations. We define the fractal radiusr D by its rela-
tion to the multiplicity

k5S r Dl D D or r D5k1/Dl . ~2.1!

Here l is a length scale that makes the ratior D/ l dimension-
less. It is plausible thatl should be of the order of the radius
of the primary particle and in this workl5a, wherea is the
radius of the primary particle. The relaxation time is defined
by

t5
m
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6pma
, ~2.2!
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where the aggregate and the primary particle masses arem
andmp , respectively, andm5kmp . The resulting equation
of motion of the aggregate particle due to the Stokes drag
force isdv/dt52v rel/t. Herev rel denotes the relative veloc-
ity between the aggregate and the media. For an acoustic
wave, with angular frequencyv and maximum velocityu0 ,
traveling along thez direction,v rel5v2u0 cos(vt). Solving
the dynamical equation gives an aggregate velocity

v5h cos~vt2f!u0
~2.3!

with h5
1

A11p4
, tanf5p2, p5Atv.

Now consider the relative motion of a pair of aggregates
labeled by 1 and 2. Their relative velocity is along thez axis
and is given byv rel5v22v15u0h12 cos(vt2a). Here the
quantityh12 represents the relative entrainment between the
aggregate pair, withh125up22q2[(11p4)(11q4)]21/2,
wherep25t1v, q

25t2v, anda is a constant.
The collision volume is the volume surrounding the first

aggregate, which the second aggregate must enter for the
collision to occur. The rate of creation of collision volume
for two aggregates is the kernel characterizing the collision
process. Because the relative motion between the two aggre-
gates is along thez axis, the rate of creation of collision
volume can be calculated by multiplying the collision cross
section, given in this case byp(r 11r 2)

2, with the average
relative distance one of the aggregates travels with respect to
the other in a unit time. This is carried out by integrating the
absolute value of the relative velocity over one acoustic pe-
riod and then dividing by the period. The kernel becomes

K1252~r 11r 2!
2h12u0 . ~2.4!

Equation~1.1!, together with this kernel, specifies the ortho-
kinetic dynamics for the present analysis. Here the two radii
are the fractal radii of the aggregates.

III. ASYMPTOTIC DYNAMICAL EQUATION

We found that despite the inhomogeneous form of the
kernel, when either one or both of the colliding aggregates
are small, an asymptotic scaling solution exists. We follow
conventional methods@1,5# and introduce a scaling function
s and a corresponding scaling variablex5k/s. We also make
the standard assumption about the form of the scaling solu-
tion, i.e., it is of the form

ck5
Np

s2
rS ksD→ Np

s2
r~x! with Np5 (

k51

`

kck , ~3.1!

wherer(x) is referred to as the reduced concentration and
satisfies* 0

`dx x r(x)51.
We introduce two auxiliary quantitieszs and k through

the relations p25tv[k121/D/k5zsx
121/D with

zs[(1/k)s121/D and k56pma/mpv. We also define an
s-dependent reference pointx1 such that for larges,

tv5zsx1
121/D;sd@1, x1;s@~d2111/D !/~121/D !#→0,

~3.2!

where 0,d,121/D and D must satisfyD.1. We now
divide thex integration into two regions: I, 0,x,x1 and II,
x.x1 . As s goes to`, the contribution from region I be-
comes negligible. To evaluate the kernel of Eq.~2.4! in re-
gion II, we denote p25zsy

121/D, with y5 i /s, and
q25zsz

121/D, with z5 j /s. This leads to

Ki j5
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2s2/D

zs
F~y,z!

~3.3!

with F~y,z!5
~y1/D1z1/D!2uy121/D2z121/Du

~yz!121/D .

Thus to leading order ins, the kernel function reduces to the
standard form of Ref.@5#. Using Eqs.~3.1! and ~3.3! we
rewrite Eq.~1.1! as

2
W

x

d
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Here
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with C52u0a
2kNp512pu0a

3
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Notice thatW is a function ofs and ds/dt. A priori, one
might think thatW should depend on time. However, to be
consistent with Eq.~3.4!,W must be a constant. This allows
the Smoluchowski equation to be decoupled into two sets of
equations. To leading order ins, Eq. ~3.4! constitutes the
scaling equation forr(x), while Eq. ~3.5! specifies how the
scale functions evolves in time.

With W being constant from Eq.~3.5!, we continue to
solve fors. For 1.5,D<3,

s5s0S 11
t

gt1
D g

, ~3.6!

with t15s0
1/g/WC andg5D/(2D23). Denote the ‘‘scaling

solution extrapolation’’ of the average number multiplicity at
t50 as^k0&. From ~3.6! it follows that

^k&5^k0&S 11
t

gt1
D g

. ~3.7!

Notice that ^k& is essentially the average mass, since
k5m/mp . ForD→Dc53/2, g→`,

^k&5^k0&exp~ t/t1!5^k0&exp~CWt!, ~3.8!
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and forD,Dc , g,0,

^k&5^k0&S 12
t

tc
D 2ugu

, tc5ugut1 . ~3.9!

Equations ~3.7!–~3.9! are reminiscent of the nongelling,
critical, and gelling cases discussed in the literature@5,9,10#.
Following the approach of Ref.@5#, the analytic solutions for
the present case forD.Dc in the smallx and the largex
regions are, respectively,

r;e21/x121/D
, r;x123/De2cx, ~3.10!

wherec is a parameter.

IV. DISCRETE-SECTIONAL MODEL AND NUMERICAL
RESULTS

We used a numerical model to calculate the time evolu-
tion of the particle size distribution of an agglomerating sys-
tem when driven by an acoustic source. The basic program
was developed by Landgrebe and Pratsinis@11# and is based
on a modified version of the discrete-sectional model of Wu
and Flagan@12#, evolved from the sectional model of Gel-
bard, Tambour, and Seinfeld@13#. In this program, the
discrete-size spectra of the Smoluchowski equation are
grouped into ‘‘bins’’ labeled by the indexa. The maximum
numbers of the discrete points and of the continuum sectors
areMd andMs , respectively. Fora<Md , the bins contain
aggregates of a single multiplicity given byna5a and for
a.Md the bins contain aggregates with the range of multi-
plicity na21< i<na for all iPa. In the sectional region, the
multiplicity na is defined through the iterative relation

na5bna21, whereb is some parameter greater than 1 and
nMd115Md10.5.

Numerical calculations@14# determine the time evolution
of the acoustic agglomeration process for two different initial
distributions. Figure 1 shows plots of log10 ca vs log10 n̄a ,
with the fractal dimensionD52.5. Hereca is the concentra-
tion of aggregates in theath bin. The curves correspond to
various reduced times indicated in the caption. Figure 1~a!
corresponds to the case with an initial state populated by one
interval of small size aggregates, referred to as the mono-
initial-interval case. This system evolves slowly at first,
building up larger sized aggregates through agglomeration
between approximately the same sized aggregates. When
enough large sized aggregates form such that the interaction
between large and small particle sizes becomes appreciable,
the agglomeration rate increases and the system begins form-
ing an asymptotic distribution. Figure 1~b! shows the time
evolution of the split-size initial distribution, or the di-initial-
interval case. The interaction between the large sized aggre-
gates and the smaller aggregates becomes the dominant in-
teraction from the beginning. For small times, the
agglomeration process continues at a much faster rate. This
is a direct consequence of the dependence of the orthokinetic
agglomeration kernel on the difference of aggregate mass.
While both distributions undergo very different evolution for
small times,both develop into a similar distribution as the
agglomeration process reaches the asymptotic scaling re-
gion. As implied above, the only difference in the asymptotic
distributions for each initial condition lies in the time interval
needed to reach the asymptotic regime. The idea of introduc-
ing large-size catalytic aerosol has been explored quantita-
tively both theoretically, which is based on the orthokinetic
and hydrodynamic mechanics, and experimentally@15#. Our
results agree with the conclusion that the catalytic aerosols
speed up the agglomeration process. Our main interest here
is to demonstrate that beginning from two very different ini-
tial distributions is the same asymptotic scaling distribution.
We now proceed to discuss the scaling property.

The scaling behavior or self-preserving behavior is usu-
ally displayed by the plot@1# of the dimensionless density
functionC vs the dimensionless size variableX. Applied to
the present case, withVp being the hard-sphere volume of
the primary particle,

FIG. 1. Time evolution of the size distribution withD52.5 for
the ~a! the mono-initial-interval and~b! the di-initial-interval distri-
butions, at various reduced time defined ast̄5t/tscale, where
tscale51/(2u0a

2N0).

FIG. 2. Plot ofC vsX for distributions in the scaling region for
the initial mono- and di-distributions withD52.5. The reduced
times are, respectively,t̄594 000 for the mono-distribution and
t̄5449 for the di-distribution.
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——→
scaling limit

x, ~4.1!

C5
V

N2 ca5
^na&2

Np
Vpca ——→

scaling limit
Vpr~x!. ~4.2!

Figure 2 is a plot ofC vsX for distributions in the scaling
region for the mono-initial-interval case and the di-initial-
interval case withD52.5. These plots correspond to data
taken at reduced times ten times longer than the reduced
times of curvesE in Fig. 1. This illustrates the approach to
one common scaling distribution for a given fractal dimen-
sion. It turns out that as the fractal dimension decreases the
width of the scaling distribution increases. Also our numeri-
cal results and the predictions of Eq.~3.10! in the large and
smallX regions are in reasonable agreement.

To conclude, we have presented theoretical arguments to
demonstrate both analytically and numerically the approach
of the asymptotic scaling behavior in orthokinetic acoustic
agglomeration process. With the inclusion of the fractal
structure there is the critical dimensionD5 3

2 , below which
the average aggregate multiplicity will become infinite for
some finite time.

ACKNOWLEDGMENTS

We thank Professor O. A. Ezekoye for enlightening dis-
cussions on the experimental and computational aspects of
the Acoustic Agglomeration. Thanks are due to Professor
Austin M. Gleeson for his encouragement and useful com-
ments on the present work. We are grateful to Professor Soti-
ris Pratsini for making the computer program available to us
and to Dr. Vemury for discussions.

@1# S. K. Freilander,Smoke, Dust and Haze~Wiley, New York,
1977!.

@2# For earlier work, see E. P. Mednikov,Acoustic Coagulation
and Precipitation of Aerosols~USSR Academy Science of
Moscow, Moscow, 1963!. For recent work, see T. L. Hoff-
mann and G. H. Koopmann, J. Acoust. Soc. Am99, 2130
~1996!; see also J. A. Gallego, E. Riera, G. Rodriguez, T. L.
Hoffmann, J. C. Galvez, L. Elvira, F. Vazquez, F. Montoya, J.
J. Rodriguez, F. J. Gomez, and M. Martin~unpublished!.

@3# R. Tiwary and G. Reethof, J. Vib. Acoust. Stress, Rel. Design
109, 185 ~1987!.

@4# Limin Song, Ph.D. thesis, Pennsylvania State University, 1990
~unpublished!; see also L. Song, G. H. Koopmann, and T. L.
Hoffmann, J. Vib. Acoust.116, 208 ~1994!.

@5# P. G. J. Van Dongen and M. H. Ernst, Phys. Rev. Lett.54,
1369 ~1985!.

@6# R. D. Mountain, G. W. Mulholland, and H. Baum, J. Colloid.
Interface114, 67 ~1986!.

@7# T. Matsoukas and S. K. Friedlander, J. Colloid. Interface146,
495 ~1991!.

@8# S. Vemury and S. E. Pratsini, J. Aerosol Sci. Am.26, 175
~1995!.

@9# F. Leyvraz and H. R. Tschudi, J. Phys. A15, 1951~1982!.
@10# E. M. Hendriks, M. H. Ernst, and R. M. Ziff, J. Stat. Phys.31,

519 ~1983!.

@11# J. D. Landgrebe and S. E. Pratsinis, J. Colloid. Interface139,
63 ~1990!.

@12# J. J. Wu and R. C. Flagan, J. Colloid. Interface Sci.123, 339
~1988!.

@13# F. Gelbard, Y. Tambour, and J. H. Seinfeld, J. Colloid. Inter-
face76, 541 ~1980!.

@14# The following set of parameter values was used for our nu-
merical calculation. The radius, volume, and density of the
primary aggregate are taken to bea51028 m,
Vp54.19310224 m3, andrp51200 kg/m3, respectively. The
thermodynamic properties of the fluid~air! media are tempera-
ture T5300 K, pressure P5105 Pa, and viscosity
m51.8131024 g/cm s. The frequency of the incident acoustic
wave is 1 kHz and the sound pressure level is 154 dB, giving
u05(1/P)AT/gR10(SPL294)/2055 cm/s, whereg57/5 and
R58.31 J/~K mol! were used. Following the approach of Ref.
@11#, we ‘‘overload’’ the system in order to arrive at a reason-
able rate for the numerical calculation. We tookN05831020

aggregates/m3, which leads totscale50.35 ms. The asymptotic
scaling region is reached for small-size case at about 0.1 s and
for the split-size case at about 1 ms. In this work the default
values areMd520,Ms5100,b51.5, andz52, wherez is a
moment parameter; see Ref.@11# for details.

@15# T. L. Hoffmann, W. Chen, G. H. Koopmann, A. W. Scaroni,
and L. Song, J. Vibration Acoust.115, 233 ~1993!.

54 3039BRIEF REPORTS


